Section 1.5

Vertical Line Test for Functions: A set of points in a coordinate plane is the graph of y as a function of x if and only if no vertical line intersects the graph at more than one point.

Zeros of a Function: The zeros of a function f of x are the x-values for which f(x) = 0.

Increasing and Decreasing Functions

- a) A function f is **increasing** on an interval if, for any x_1 and x_2 in the interval, $x_1 < x_2$ implies $f(x_1) < f(x_2)$.
- b) A function f is **decreasing** on an interval if, for any x_1 and x_2 in the interval, $x_1 < x_2$ implies $f(x_1) > f(x_2)$.
- c) A function f is constant on an interval if, for any x_1 and x_2 in the interval, $f(x_1) = f(x_2)$.

Relative Maximum and Relative Minimum

A function value f(a) is called the relative minimum of f if there exists an interval (x_1, x_2) that contains a such that

$$x_1 < x < x_2$$
 implies $f(a) \le f(x)$.

A function value f(a) is called the relative maximum of f if there exists an interval (x_1, x_2) that contains a such that

$$x_1 < x < x_2$$
 implies $f(a) \ge f(x)$.

Average Rate of Change: The average rate of change between any two points $(x_1, f(x_1))$ and $(x_2, f(x_2))$ is the slope of the line through the two points.

A. R. of C. of f from
$$x_1$$
 to $x_2 = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$.

Even and Odd Functions

A function y = f(x) is even if, for each x in the domain of f,

$$f(x) = f(-x)$$

A function y = f(x) is odd if, for each x in the domain of f,

$$-f(x) = f(-x)$$
 or $f(x) = -f(-x)$.

Problem 1. Use the graph of the function to find the domain and range of f.

Problem 2. Find the zeros of the function algebraically.

a) $f(x) = 2x^2 - 7x - 30$

b)
$$f(x) = \sqrt{2x - 1}$$

c)
$$f(x) = 9x^4 - 25x^2$$

c)
$$f(x) = \begin{cases} 2x + 1, \ x \le -1 \\ x^2 - 2, \ x > -1 \end{cases}$$

Problem 4. Find the average rate of change of the function from x_1 to x_2 .

a)
$$f(x) = x^2 - 2x + 8$$
, $x_1 = 1$, $x_2 = 5$.

b)
$$f(x) = -\sqrt{x+1+3}$$
, $x_1 = 3$, $x_2 = 8$.

Problem 5. Determine whether the function is even, odd, or neither. Then describe the symmetry.

a)
$$h(x) = x^3 - 5$$

b)
$$f(t) = t^2 + 3t - 4$$

Homework: Read section 1.5, do #7, 13, 15, 21, 23, 33, 35, 41, 51, 63, 71 (the quiz for this section will be taken from these problems)